
Introduction: Linux Basics and
Cryptographic Tools

CSCI 297: Ethical Hacking

About Me
Just a guy

Course Overview
What is Hacking?
De�nition: "Hacking is the practice of exploring and manipulating systems or networks in ways that deviate
from their intended purposes."

Examples of Hacking Activities:

Reverse Engineering Binaries

Network Exploitation and Packet Spoo�ng

Cryptography and Encryption Techniques

Memory and Disk Forensics

Circumvention of Censorship and Surveillance

Key Concept: "Being naughty is fun!"

Campus Prohibited Activities
According to university policy, the following activities are prohibited:

Unauthorized access or disclosure of con�dential information

Misrepresentation of identity

Tampering with computer con�gurations

Impeding network traf�c

For more details, refer to the University’s Computing Resources Policy.

https://my.wlu.edu/general-counsel/code-of-policies/confidentiality-and-information-security/computing-resources-network-website-and-email-use-policy

Course Objectives
In this course, we will:

Practice Unauthorized Access

Master Identity Misrepresentation

Tamper with Computer Con�gurations

Disrupt Network Traf�c

Linux Introduction
Why Linux for Ethical Hacking?

Stability, �exibility, and control

Prevalence in server environments

Strong community and resource availability

Basic Linux Commands
Terminal introduction

Command line navigation: ls , cd , mkdir , pwd

Managing �les and directories

Interactive Game: Bashcrawl

Learning commands in a fun and engaging way

Practical command-line navigation exercise

Download Bashcrawl from: GitHub.

Start Bashcrawl

cd bashcrawl

./start_game.sh

https://github.com/notklaatu/bashcrawl/archive/refs/heads/master.zip

Introduction to Arch Linux
Arch Linux is a lightweight and �exible Linux distribution designed for simplicity and customization.

Follows a rolling-release model, meaning continuous updates keep your system current.

Emphasizes simplicity and minimalism, providing users with the freedom to build their system exactly

how they need it.

Pacman Package Manager
Pacman is the package manager used in Arch Linux.

It provides ef�cient package management and dependency resolution.

Simple commands like pacman -S package can be used to install new packages.

pacman -Syu to update the entire system.

pacman -Ss package to search for a package.

Arch User Repository (AUR)
The AUR is a community-driven repository for Arch users, providing a vast collection of user-contributed

packages.

While the AUR offers a wide range of packages, users should exercise caution and review PKGBUILD scripts

for security and compatibility before installation.

Rolling Release Model
Arch Linux follows a rolling-release model, which means no �xed release cycles.

This model ensures that users always have access to the latest software and security patches.

While it offers the latest software, users should be cautious during updates to avoid potential system

breakages.

Viewing the Arch Linux Keyring

This command lists all the keys in the Arch Linux keyring.

Each key is identi�ed by its key ID, �ngerprint, and associated user ID (usually an email address).

The keyring contains keys used to sign of�cial Arch Linux packages, ensuring their authenticity and

integrity.

View the Arch Linux keyring

pacman-key --list-keys

Understanding the Keyring
Keyring Use: Holds cryptographic keys for package management and authentication.

Functionality: Contains keys used to sign of�cial packages in Arch Linux, ensuring their authenticity and

integrity.

Management: Users can view, manage, and verify keys to maintain system security.

Introduction to Encryption (PGP)
Importance of Pretty Good Privacy (PGP)

Purpose: Encrypts data for secure communication and storage.

Methodology: Uses public-key cryptography for cryptographic privacy and authentication.

Applications: Widely used for digital signatures, secure email communications, and �le encryption.

Introduction to Cryptography
Signi�cance: Essential in securing communications and protecting data from unauthorized access.

Types: Differentiates between symmetric and asymmetric encryption.

Real-world Use: Extensively applied in securing internet communications and protecting sensitive data.

What is the Web of Trust?
Concept

Web of Trust (WoT): A decentralized trust model used in PGP to establish the credibility of public key

bindings.

Purpose: Allows users to endorse the identity of key owners, thus extending trust.

Functionality
Operation: Users sign each other’s public keys to verify and trust the owner’s identity.

Network Building: This endorsement helps others in the network decide whom to trust.

How the Web of Trust Works
When you sign someone’s public key, you are asserting that you verify and trust the identity of the key

owner.

Others can then decide whether to trust signatures made by those keys based on their trust in you,

creating a chain of trust.

The more signatures a key has, and the more trusted those signatories are, the stronger the trust in that

key becomes.

Generating PGP Keys with GnuPG

When prompted for the kind of key you want, choose "(9) ECC (sign and encrypt)".

Select "Curve 25519"

Set the expiration date for the key. Typically, one to two years is suggested to balance security and

maintenance.

Enter your name, email, and an optional comment. This info will be associated with your key and public.

Command to generate a new ECC key for signing and encrypting

gpg --full-generate-key

Managing and Uploading Your ECC Key

After verifying your key details, export it in ASCII format.

Upload the public key to a keyserver like keyserver.ubuntu.com to make it accessible.

Sharing your public key allows others to send you encrypted messages and verify your signatures

List GPG keys for verification

gpg --list-keys

Export your public ECC key

gpg --armor --export your-email@example.com > myecckey.asc

Upload your key to a keyserver

gpg --keyserver keyserver.ubuntu.com --send-keys your-key-id

Verifying Your Key on the Keyserver

Use this command to search for your key using your email address.

If your key appears in the search results, it con�rms successful upload.

If not, ensure you have the correct key ID and that there was no error during the upload process.

It might take a few minutes for the key to appear due to keyserver synchronization.

Search for your key on the keyserver

gpg --keyserver keyserver.ubuntu.com --search-keys your-email@example.com

Downloading a Key from the Keyserver
Search for your key on the keyserver

gpg --keyserver keyserver.ubuntu.com --recv-keys C79398ABCF1852DF

Replace ‘C79398ABCF1852DF‘ with the key ID you wish to download.

This command fetches the public key and adds it to your keyring.

Verify the key details match what you expect (e.g., owner, email).

Assigning Trust to a Key
Edit the key to assign trust

gpg --edit-key C79398ABCF1852DF

At the ‘gpg>‘ prompt, type ‘trust‘ to initiate the trust assignment process.

Choose the level of trust from the options provided: 1. I do not trust 2. I do NOT trust 3. I trust marginally

4. I trust fully 5. I trust ultimately

Con�rm your selection and quit the editor with ‘save‘.

Understanding Trust Levels
I do not trust: Should not be used to validate signatures.

I trust marginally: Enough for signatures if multiple marginally trusted keys sign.

I trust fully: Fully trusted to sign other keys and documents.

I trust ultimately: This is your own key or one you equivalently trust as your own.

Trust levels help manage and mitigate the risk of accepting fraudulent or compromised keys.

Encrypting and Signing with PGP

Encrypting messages for secure communication

Digital signatures for authenticity

Encrypt a file

gpg --encrypt --recipient ’name@example.com’ file.txt

Sign a file

gpg --sign file.txt

Signing with a Speci�c Key

Replace ‘C79398ABCF1852DF‘ with the key ID you wish to use for signing.

This command uses the speci�ed key to sign the ‘document.txt‘.

The ‘–default-key‘ option can be used to specify which of your keys to use for signing if you have multiple

keys.

Sign a document with a specific PGP key

gpg --default-key C79398ABCF1852DF --sign document.txt

Options for Signing with GPG

Combining signing and encrypting: Enhances security by not only verifying the origin but also keeping the

contents con�dential.

Specify the recipient’s email associated with their public key for encryption.

Always verify the recipient’s key trust level and validity before sending sensitive information.

Sign and encrypt a document for a recipient

gpg --default-key mykeyid --sign --encrypt --recipient recipient@example.com

Verifying a Document’s Signature

Use the ‘–verify‘ option followed by the signature �le and the original document.

GnuPG checks the signature against the document to ensure that it has not been altered.

You will receive a message indicating whether the signature is valid, who signed it, and if the signer’s key is

trusted.

If the key is not already in your keyring, GnuPG will prompt that the signature cannot be veri�ed due to a

missing key.

Verify the signature of a document

gpg --verify document.sig document.txt

Verifying a Signature Within a Single File

Use the ‘–verify‘ command directly on the ‘.gpg‘ �le.

GnuPG will check the embedded signature against the content.

The output will tell you if the signature is valid, who the signer is, and whether their key is trusted.

This method is typical for �les where the content and signature are not separated.

Verify a signature where the document and signature are integrated

gpg --verify signedfile.txt.gpg

In-Class Activity/Homework

Today’s Activity: Secure Communication Practice

Each student will create a PGP key pair and sign and encrypt an email to two other students in the class.

After completing the email exchange, each student will compile all the encrypted and decrypted �les into a

zip �le.

Encrypt the zip �le using PGP and submit it to the course’s hidden service.

Submission Link: Course’s Hidden Service.

Objective: Practice secure communication techniques using PGP encryption and digital signatures.

http://yhiyyb6lryhl2a746acbcp7jorgkouct2qno7kctszmzxan5a3el5sid.onion/

